

Work and Simple Machines

4 – 1 Work and Power

What is Work ?

- Work is done when a force exerted on an object causes that object to move a distance.
 - The motion must be in the direction of the force.
 - Measured in Joules. (J)

Is this work ?

Is there work being done here ?

> Is the object moving in the direction of the force being exerted ?

Is this work ?

Is there work being done here ?

> Is the object moving in the direction of the force being exerted ?

Is there work being done by the locomotive if the train is coasting along?

9371

Example

 As you push a lawn mower, the horizontal force is 300 N. If you push the lawn mower 500 m, how much work did you do ?

🗧 300 N

W = F d

500 m W = 300 N * 500 m

W = 150,000 J

3 months

What is Power ?

- <u>Power</u> the rate at which work is done.
 How fast work is done.
- Why the term power was developed...

Example	
1. At the start of of work in 7 se did the car hav	a race, a car does 50,000 J conds. How much power ve ?
₩ 🗧 50,000 J	Work Power =
↓ 7 s	Time <u>50,000 J</u> Power = 7 s
	Power = 7,142.9 W

Power and Energy

- When you do work, you lose energy.
 - The energy doesn't just disappear
 - The energy is transferred to the object you are doing work on.
- For example...
 - When you slam a locker shut (work), you are transferring energy to the locker.
- more Power means more Energy

4 – 2 Using Machines

What is a Machine ?

<u>Machine</u> – A device that makes work easier.

How do machines make work easier ?

Machine make work easier by changing the force we exert in :

- 1. Size
- 2. Direction
- 3. Both

Machines help us overcome 2 things :

- 1. Gravity
 - Lifting objects
- 2. Friction
 - Moving objects

Machine does not decrease the amount of work we do.

Usually we have to do more work with a machine

Mechanical Advantage

 Mechanical Advantage – the number of times that a machine multiplies the effort force.

Calculating Mechanical Advantage

Example

 To open a bottle, you apply a force of 50N on the bottle opener. The bottle opener applies a force of 775N to the bottle cap. What is the mechanical advantage of the bottle opener ?

Example

 While riding your bicycle, you apply a force of 350N to the pedals. The wheels of the bicycle apply a force of 250N to the ground. What is the mechanical advantage of the bicycle ?

Efficiency

- Some of the input work is transferred into heat energy by friction inside a machine.
- <u>Efficiency</u> the ratio of output work to the input work.

$$Efficiency = \frac{Output Work}{Input Work} \times 100 \%$$

 You do 100 J of work in pulling out a nail with a claw hammer. If the hammer does 70 J of work, what is the hammer's efficiency ?

Example

- 1. You do 150 J of work pushing a box up a ramp. If the ramp does 105 J of work, what is the efficiency of the ramp?
- $W_{in} = 150 \text{ J}$ $Eff = \frac{W_{out}}{W_{in}} \times 100 \%$
- $W_{out} = 105 J$ Eff $= \frac{105 J}{150 J} \times 100 \%$
 - Eff = ? $Eff = 0.7 \times 100 \% = 70 \%$

4 - 3 Simple Machines

What is a Simple Machine ?

- Simple Machine A machine that does work with only one movement.
- <u>Compound Machine</u> A machine made up of a combination of simple machines.

6 Types of Simple Machines

- 1. Lever
- 2. Pulley
- 3. Wheel and Axle
- 4. Inclined Plane
- 5. Screw
- 6. Wedge

Lever – A bar that is free to pivot, or turn, about a fixed point.

<u>Fulcrum</u> – the fixed point of a lever.

Example

You can use a crowbar 140 cm long to lift a large rock that is 20 cm from the fulcrum. What is the IMA of the lever ?

3 Classes of Levers

- 1. <u>First Class Lever</u> the fulcrum is in the middle.
- 2. <u>Second Class Lever</u> the weight is in the middle.
- 3. <u>Third Class Lever</u> the input force is in the middle.

Second Class Lever

Third Class Lever

Pulley

- <u>Pulley</u> A grooved wheel with a rope or a chain running along the groove.
- The IMA for a Pulley is :
 - The number of ropes holding the resistance weight.

3 Classes of Pulleys

- 1. <u>Fixed Pulley</u> there is a single pulley attached to an immovable object.
- 2. <u>Movable Pulley</u> there is a single pulley attached to the resistance force.
- 3. <u>Block and Tackle</u> there are 2 or more pulleys, both fixed and movable working together.

Wheel and Axle

Wheel and Axle – a simple machine consisting of two wheels of different sizes that rotate together. Doorknob, faucet handle, icecream makers, bicycle gears. Radius of wheel IMA =**Radius of axle**

The wheel of an ice-cream maker has a radius of 20 cm. The axle has a radius of 15 cm. What is the IMA of the ice-cream maker ?

Inclined Plane

 <u>Inclined Plane</u> – a sloping surface used to raise objects.

IMA = $\frac{\text{Length of slope}}{\text{Height of slope}} = \frac{1}{h}$

Screw – An inclined plane wrapped around a cylindrical post.

Wedge

 <u>Wedge</u> – an inclined plane with one or two sloping sides.

An inclined plane that moves, generally used for cutting.

