Chapter 4

Work and Simple Machines

4 - 1 Work and Power

What is Work ?

- Work - is done when a force exerted on an object causes that object to move a distance.
- The motion must be in the direction of the force.
- Measured in Joules. (J)

Is this work ?

- Is there work being done here?
- Is the object moving in the direction of the force being exerted?

Is this work ?

- Is there work being done here?
- Is the object moving in the direction of the force being exerted?

Isthere rork being done by the locomolive

 - Pfye tiainis coasting along ?

Calculating Work

Joules

Meters
Newtons

- Work = Force * Distance
- $\quad \mathrm{W}=\mathrm{Fd}$

Example

1. As you push a lawn mower, the horizontal force is 300 N . If you push the lawn mower 500 m , how much work did you do ?
䧑 300 N
$W=F d$
500 m
$W=300 N * 500 \mathrm{~m}$
■ ?
$W=150,000 \mathrm{~J}$

What is Power ?

- Power - the rate at which work is done. - How fast work is done.
- Why the term power was developed...

Calculating Power

Joules (J)

Watts (W)

Power $=\frac{\text { Work }}{\text { Time }}$
Seconds (s)

Example

1. At the start of a race, a car does $50,000 \mathrm{~J}$ of work in 7 seconds. How much power did the car have?
W品 $50,000 \mathrm{~J}$
t: 7 s
P日 ?
Work
Power $=\frac{\text { Time }}{\text { Tim }}$
Power $=\frac{50,000 \mathrm{~J}}{7 \mathrm{~s}}$
Power = 7,142.9 W

Power and Energy

- When you do work, you lose energy.
- The energy doesn't just disappear
- The energy is transferred to the object you are doing work on.
- For example...
- When you slam a locker shut (work), you are transferring energy to the locker.
- more Power means more Energy

4 - 2 Using Machines

What is a Machine ?

- Machine - A device that makes work easier.

How do machines make work easier?

Machine make work easier by changing the force we exert in :

1. Size
2. Direction
3. Both

Size

Direction

Machines help us overcome 2 things :

 1. Gravity- Lifting objects

2. Friction

- Moving objects

- Machine does not decrease the amount of work we do.
- Usually we have to do more work with a machine

Mechanical Advantage

- Mechanical Advantage - the number of times that a machine multiplies the effort force.

Calculating Mechanical Advantage

Example

1. To open a bottle, you apply a force of 50 N on the bottle opener. The bottle opener applies a force of 775 N to the bottle cap. What is the mechanical advantage of the bottle opener ?

Example

1. While riding your bicycle, you apply a force of 350 N to the pedals. The wheels of the bicycle apply a force of 250 N to the ground. What is the mechanical advantage of the bicycle ?

Efficiency

- Some of the input work is transferred into heat energy by friction inside a machine.
- Efficiency - the ratio of output work to the input work.

Output Work
 Efficiency $=\frac{\text { Output Work }}{\text { Input Work }} \times 100 \%$

Example

1. You do 100 J of work in pulling out a nail with a claw hammer. If the hammer does 70 J of work, what is the hammer's efficiency ?

Example

1. You do 150 J of work pushing a box up a ramp. If the ramp does 105 J of work, what is the efficiency of the ramp?
$W_{\text {in }}=150 \mathrm{~J} \quad E f f=\frac{W_{\text {out }}}{W_{\text {in }}} \times 100 \%$
$W_{\text {out }}=105 \mathrm{~J}$
$\mathrm{Eff}=\frac{105 \mathrm{~J}}{150 \mathrm{~J}} \times 100 \%$
Eff $=$?
Eff $=0.7 \times 100 \%=70 \%$

4-3 Simple Machines

What is a Simple Machine ?

- Simple Machine - A machine that does work with only one movement.
- Compound Machine - A machine made up of a combination of simple machines.

6 Types of Simple Machines

1. Lever
2. Pulley
3. Wheel and Axle
4. Inclined Plane
5. Screw
6. Wedge

Lever

- Lever - A bar that is free to pivot, or turn, about a fixed point.
- Fulcrum - the fixed point of a lever.

$$
\mathrm{IMA}=\frac{\mathrm{I}_{\text {in }}}{\mathrm{I}_{\text {out }}}=\frac{\text { Length of Input Arm }}{\text { Length of Output Arm }}
$$

Example

You can use a crowbar 140 cm long to lift a large rock that is 20 cm from the fulcrum. What is the IMA of the lever ?

3 Classes of Levers

1. First Class Lever - the fulcrum is in the middle.
2. Second Class Lever - the weight is in the middle.
3. Third Class Lever - the input force is in the middle.

First Class Lever

Second Class Lever

\square

Third Class Lever

Pulley

- Pulley - A grooved wheel with a rope or a chain running along the groove.
- The IMA for a Pulley is :
- The number of ropes holding the resistance weight.

3 Classes of Pulleys

1. Fixed Pulley - there is a single pulley attached to an immovable object.
2. Movable Pulley - there is a single pulley attached to the resistance force.
3. Block and Tackle - there are 2 or more pulleys, both fixed and movable working together.

Wheel and Axle

- Wheel and Axle - a simple machine consisting of two wheels of different sizes that rotate together.
- Doorknob, faucet handle, icecream makers, bicycle gears.
$\mathrm{IMA}=\frac{\text { Radius of wheel }}{\text { Radius of axle }}=\frac{r_{w}}{r_{a}}$

Example

The wheel of an ice-cream maker has a radius of 20 cm . The axle has a radius of 15 cm . What is the IMA of the ice-cream maker ?

$$
\frac{\pi \sqrt{x}}{\pi \sqrt{2}}
$$

Inclined Plane

- Inclined Plane - a sloping surface used to raise objects.

$\mathrm{IMA}=$
 $\frac{\text { Length of slope }}{\text { Height of slope }}=\frac{\mathrm{l}}{\mathrm{h}}$

Screw

- Screw - An inclined plane wrapped around a cylindrical post.

Wedge

- Wedge - an inclined plane with one or two sloping sides.
- An inclined plane that moves, generally used for cutting.

